
Extremal and Probabilistic Graph Theory

Lecture 20

May 12nd, Thursday

We firstly review several theorems proved in previous lectures.

Theorem 20.1. Let G be a bipartite graph with average degree d and parts U, V with |U | = |V | =
n. If r, s, t > 1 are such that

n−r−s+s2d−s
2
(t− 1)s <

1

4
,

then there exists X ⊆ U and Y ⊆ V of size at least 4−
1
s dsnr−s each, satisfying that every r

vertices in X or in Y have at least t common neighbors in G(X,Y ).

Theorem 20.2. Let F = (A,B) be bipartite such that any b ∈ B has degree at most r in F .
Then

ex(n, F ) 6 C · n2−
1
r .

Definition 20.3. A graph G is r-degenerate, if for any H ⊆ G, there exists a vertex v such that
dH(v) 6 r.

Fact 20.4. G is r-degenerate if and only if the (r + 1)-core of G is empty.

Theorem 20.5. Let r > 2, and let F be an r-degenerate bipartite graph whose largest part has
size t. Then

ex(n, F ) 6 C · (t− 1)
1
2rn2−

1
4r ,

where C is an absolute constant.

Proof.
Let G be an n-vertex F -free graph with average degree 2d. Then there exists a bipartite

H = (A,B) of G with |A| = |B| = n
2 and average degree at least d. Denote s = 2r.

If (A) :
(
n
2

)r−s+s2
d−s

2
(t− 1)s < 1

4 and (B) : 4−
1
s dsn1−s > t− 1 hold, then by Theorem 20.1,

there exists X ⊆ A and Y ⊆ B such that X and Y are of size at least 4−
1
s dsn1−s > t.

Moreover, any r vertices in X or in Y have at least t common neighbors in H(X,Y ).
By the previous embedding lemma, we can find a copy of F in (X,Y ), a contradiction!( Here

we use an extended version of embedding lemma, noticing that F is r-degenerate if and only if
V (F ) can be listed as {v1, v2, · · · , vn}, satisfying that |N(vi) ∩ {v1, v2, · · · , vi−1}| 6 r.)

So (A) or (B) doesn’t hold. Since (A) implies (B), we have

n−r
(n
d

)s2
(t− 1)s >

1

4
.

1

https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)


Thus
e(H) = d · n 6 (t− 1)

1
2rn2−

1
4r .

Corollary 20.6. For bipartite F , let

dF = max
H⊆F

2e(H)

v(H)
,

then
ex(n, F ) 6 O(n

2− 1
4bdF c ) 6 O(n

2− 1
4dF ).

Proof. Because such F is bdF c-degenerate.

Theorem 20.7 (Erdös-Rényi first moment method; A general lower bound for ex(n, F )). For
bipartite F , define

cF = min
H⊆F

v(H)

e(H)

and

rF = min
H⊆F

v(H)− 2

e(H)− 1
,

where the minimums are taken only for those H ⊆ F with e(H) > 1 and v(H) > 2 respectively.
Then

ex(n, F ) > Ω(n2−rF ) > (n2−cF ).

Proof.
We can easily argue that cF > rF .
Let H ⊆ F be the subgraph of F attaining the minimum of rF .
Let v = v(H) and e = e(H). Let α be the number of copies of H in Kv.
Consider a random graph G(n, p).
Let β denote the number of copies of H in G(n, p).
So

E(β) =
∑

K∈([n]
v )

E[number of copies H in K] =

(
n

v

)
· α · pe,

and E[e(G)] = p
(
n
2

)
.

Taking p = c′ · n−rF such that

E[e(G)]− E[β] =

(
n

2

)
p−

(
n

2

)
αpe >

1

2

(
n

2

)
p,

i.e.
1

2

(
n

2

)
p >

(
n

v

)
αpe,

which is equivalent to
nrF (e−1) > nv−2.
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So there exists a graph G such that

e(G)− β >
1

2

(
n

2

)
p = Ω(n2−rF ).

Let G′ be the graph obtained from G by deleting an edge from each copy of H.
Then G′ is H-free and e(G′) > e(G)− β > Ω(n2−rF ) > Ω(n2−cf ).
But H ⊆ F , so G′ is also F -free.

Theorem 20.8. For any bipartite F ,

Ω(n2−cF ) 6 ex(n, F ) 6 O(n2−
cF
8 ),

where

cF = min
H⊆F

v(H)

e(H)
.

Proof. Because dF
2 = 1

cF
, this follows from Corollary 20.6 and Theorem 20.7.

Remark. This lower bound is still best for general F .

Theorem 20.9. Let F = {F1, F2, · · · , Fk}, where Fj is bipartite. Let

c = max
j
cFj = max

j
min
H⊆Fj

v(H)

e(H)
,

and

r = max
j
rFj = max

j
min
H⊆Fj

v(H)− 2

e(H)− 1
.

Then
ex(n, F ) > Ω(n2−r) > Ω(n2−c).

Proof. Left as an exercise.

Remark. Theorem 20.9 implies that

ex(n, {C3, C4, · · · , Cm}) > Ω(n1+
1

m−1 );

and thus
Ω(n1+

1
2t−1 ) 6 ex(n, {C3, C4, · · · , Cm}) 6 ex(n,C2t) 6 O(n1+

1
t ).

The best lower bound for C2t is given by the following theorem.

Theorem 20.10 (Lazebnik-Ustimenko-Woldar). For t > 2,

ex(n,C2t) > ex(n, {C3, C4, · · · , C2t+1}) >

{
Ω(n1+

2
3t−3 ) if t is odd;

Ω(n1+
2

3t−2 ) if t is even.

And when t = 2, 3 or 5,

ex(n,C2t) = Θ(n1+
1
t ).
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Remark. It is one of the main problems in extremal combinatorics to determine ex(n,C2t) for
t /∈ {2, 3, 5}.

Definition 20.11. For graph F , the Ramsey number r(F ) is the minimum n such that any
2-edge-coloring of Kn has a monochromatic copy of F .

Theorem 20.12. Let F = (A,B) ba a bipartite graph such that any b ∈ B has degree at most r.
Then

r(F ) 6 4r(n+ r).

Proof.
Consider any 2-edge-coloring of KN . Let Gi be the graph defined by edges of color i ∈ {1, 2}.
Since E(KN ) = E(G1) ∪ E(G2), we can assume e(G1) > 1

2

(
N
2

)
.

If G1 is F -free, then by Theorem 20.2,

e(G1) 6 ex(N,F ) 6 (n+ r)
1
rN2− 1

r .

It follows that
1

2

(
N

2

)
6 e(G1) 6 (n+ r)

1
rN2− 1

r .

Therefore, N 6 4r(n+ r).

Theorem 20.13. Let F be an r-degenerate bipartite graph with n vertices. Then

r(F ) 6 22
√
r lognn.

Proof. Left as an exercise. Hint: Using Theorem 20.8.

Remark. Recently, Lee proved that for such F , r(F ) 6 c(r)·n, proving a conjecture of Burr-Erdös.
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