Extremal and Probabilistic Graph Theory
Lecture 20

May 12nd, Thursday

We firstly review several theorems proved in previous lectures.

Theorem 20.1. Let G be a bipartite graph with average degree d and parts U,V with |U| = |V| =

n. If r,s,t > 1 are such that
1
nTTst st (1 1) < -,
(k-1 <3
then there exists X C U and Y C V of size at least A=5dnrs each, satisfying that every r

vertices in X or in'Y have at least t common neighbors in G(X,Y).

Theorem 20.2. Let F = (A, B) be bipartite such that any b € B has degree at most r in F.
Then )
ex(n,F) < C-n*"r.

Definition 20.3. A graph G is r-degenerate, if for any H C G, there exists a vertex v such that
dg(v) <.

Fact 20.4. G is r-degenerate if and only if the |(r + 1)-core of G is empty.

Theorem 20.5. Let r > 2, and let F' be an r-degenerate bipartite graph whose largest part has
size t. Then X

ex(n,F) < C-(t— 1)%112_5,
where C' is an absolute constant.

Proof.
Let G be an n-vertex F-free graph with average degree 2d. Then there exists a bipartite

H = (A, B) of G with |A] = |B| = § and average degree at least d. Denote s = 2r.

If (A) 1 (2) 7" 4=t — 1)* < L and (B) : 4 $d*n'~* > ¢ — 1 hold, then by Theorem [20.1]
there exists X C A and Y C B such that X and Y are of size at least 47%d5n1_5 >t.

Moreover, any r vertices in X or in Y have at least ¢ common neighbors in H(X,Y).

By the previous embedding lemma, we can find a copy of F in (X,Y), a contradiction!( Here
we use an extended version of embedding lemma, noticing that F' is r-degenerate if and only if
V(F') can be listed as {v1, va, - , vy}, satisfying that |N(v;) N {vi,ve, - ,vi—1}| < 71.)

So (A) or (B) doesn’t hold. Since (A) implies (B), we have

2

n~" (%)s (t—1)° > i

1
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Thus

|
Corollary 20.6. For bipartite F', let
2e(H)
dr =
P REE (H)
then L L
2— i 2- -
ex(n,F) < O(n~ 4rl) < O(n~ %r).
Proof. Because such F' is |dp]|-degenerate. ]

Theorem 20.7 (Erdds-Rényi first moment method; A general lower bound for ex(n, F)). For
bipartite F', define
. v(H)
crp = min
= HeF e(H)

and
v(H) -2

HeF e(H) -1’

rp =
where the minimums are taken only for those H C F with e(H) > 1 and v(H) > 2 respectively.
Then
ex(n, F) > Q(n®7"F) > (n®~°F).

Proof.
We can easily argue that cp > rp.
Let H C F be the subgraph of F' attaining the minimum of rp.
Let v =v(H) and e = e¢(H). Let o be the number of copies of H in K.
Consider a random graph G(n,p).

Let 8 denote the number of copies of H in G(n,p).
So

EB) = Z E[number of copies H in K| = <Z> s pf,
Ke(™)

v

and Ele(G)] = p(3).
Taking p = ¢ - n~"F such that

l.e.

which is equivalent to



So there exists a graph G such that

n

e<G>—ﬁ>;(2

)p = Q(n?r).

Let G’ be the graph obtained from G by deleting an edge from each copy of H.
Then G’ is H-free and e(G’) > e(G) — B = Q(n?7"F) > Q(n?7¢f).
But H C F, so G’ is also F-free.

Theorem 20.8. For any bipartite F,

Q(n*~r) < ex(n, F) < O(n*™ %),

where

cr = min v(H)
T HCE e(H)

Proof. Because 9 = L this follows from Corollary and Theorem

2 cp’

Remark. This lower bound is still best for general F'.

Theorem 20.9. Let F = {Fy, F», -+, F}.}, where Fj is bipartite. Let

. u(H)
¢ = max cp, = max min ,
5 j HCF; e(H)
and
. v(H) -2
7 =maxrp, = max min ————.
i L j HCF; e(H)—1
Then

Proof. Left as an exercise.
Remark. Theorem implies that

1

e:c(n, {C?” C47 S C’m}) > Q(n1+m_1 )7

and thus ) )
Q(n't21) < ex(n, {Cs,Cy, - -+, Cm}) < ex(n, Co) < O(n'F7).

The best lower bound for Co; is given by the following theorem.
Theorem 20.10 (Lazebnik-Ustimenko-Woldar). Fort > 2,

Q(n“’ﬁ) if t is odd;

> ’ ,Cyy e >
ex(n, Cy) 2 ex(n,{Cs,Cy Cort1}) {Q(n1+3n522) if t is even.

And when t = 2,3 or 5,
1
ex(n, Cy) = O(n't7).



Remark. It is one of the main problems in extremal combinatorics to determine ex(n,Cy;) for
t¢{2,3,5}.

Definition 20.11. For graph F, the Ramsey number r(F') is the minimum n such that any
2-edge-coloring of K, has a monochromatic copy of F.

Theorem 20.12. Let F = (A, B) ba a bipartite graph such that any b € B has degree at most r.

Then
r(F) <4"(n+r).
Proof.
Consider any 2-edge-coloring of K. Let G; be the graph defined by edges of color i € {1,2}.

Since F(Ky) = E(G1) U E(Gs), we can assume e(G1) > %(g)

If Gy is F-free, then by Theorem [20.2]
e(G1) < ex(N,F) < (n+ T)%NQ—%.

It follows that 1IN
< ) <e(G1) < (n+7) N2 7.

2\ 2
Therefore, N < 4"(n +1).
|
Theorem 20.13. Let F' be an r-degenerate bipartite graph with n vertices. Then
r(F) < 22Vrlosny,
Proof. Left as an exercise. Hint: Using Theorem [20.8 |

Remark. Recently, Lee proved that for such F', r(F) < ¢(r)-n, proving a conjecture of Burr-Erdos.



