Extremal and Probabilistic Graph Theory Lecture 20

May 12nd, Thursday

We firstly review several theorems proved in previous lectures.

Theorem 20.1. Let G be a bipartite graph with average degree d and parts U, V with $|U| = |V| =$ n. If $r, s, t \geq 1$ are such that

$$
n^{-r-s+s^2}d^{-s^2}(t-1)^s < \frac{1}{4},
$$

then there exists $X \subseteq U$ and $Y \subseteq V$ of size at least $4^{-\frac{1}{s}}d^{s}n^{r-s}$ each, satisfying that every r vertices in X or in Y have at least t common neighbors in $G(X, Y)$.

Theorem 20.2. Let $F = (A, B)$ be bipartite such that any $b \in B$ has degree at most r in F. Then

$$
ex(n, F) \leq C \cdot n^{2 - \frac{1}{r}}.
$$

Definition 20.3. A graph G is r-degenerate, if for any $H \subseteq G$, there exists a vertex v such that $d_H(v) \leq r$.

Fact 20.4. G is r-degenerate if and only if the $(r + 1)$ [-core](https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)) of G is empty.

Theorem 20.5. Let $r \geqslant 2$, and let F be an r-degenerate bipartite graph whose largest part has size t. Then

$$
ex(n, F) \leq C \cdot (t-1)^{\frac{1}{2r}} n^{2-\frac{1}{4r}},
$$

where C is an absolute constant.

Proof.

Let G be an *n*-vertex F -free graph with average degree 2d. Then there exists a bipartite $H = (A, B)$ of G with $|A| = |B| = \frac{n}{2}$ $\frac{n}{2}$ and average degree at least d. Denote $s = 2r$.

If (A) : $\left(\frac{n}{2}\right)$ $\left(\frac{m}{2}\right)^{r-s+s^2} d^{-s^2} (t-1)^s < \frac{1}{4}$ $\frac{1}{4}$ and (B) : $4^{-\frac{1}{s}}d^{s}n^{1-s} > t - 1$ hold, then by Theorem [20.1,](#page-0-0) there exists $X \subseteq A$ and $Y \subseteq B$ such that X and Y are of size at least $4^{-\frac{1}{s}}d^{s}n^{1-s} \geq t$.

Moreover, any r vertices in X or in Y have at least t common neighbors in $H(X, Y)$.

By the previous embedding lemma, we can find a copy of F in (X, Y) , a contradiction! Here we use an extended version of embedding lemma, noticing that F is r-degenerate if and only if $V(F)$ can be listed as $\{v_1, v_2, \cdots, v_n\}$, satisfying that $|N(v_i) \cap \{v_1, v_2, \cdots, v_{i-1}\}| \leq r$.

So (A) or (B) doesn't hold. Since (A) implies (B) , we have

$$
n^{-r} \left(\frac{n}{d}\right)^{s^2} (t-1)^s > \frac{1}{4}.
$$

2

Thus

Corollary 20.6. For bipartite
$$
F
$$
, let

$$
d_F = \max_{H \subseteq F} \frac{2e(H)}{v(H)},
$$

 $e(H) = d \cdot n \leqslant (t-1)^{\frac{1}{2r}} n^{2-\frac{1}{4r}}.$

then

$$
ex(n, F) \leq O(n^{2 - \frac{1}{4\lfloor d_F \rfloor}}) \leq O(n^{2 - \frac{1}{4d_F}}).
$$

Proof. Because such F is $\left| d_F \right|$ -degenerate.

Theorem 20.7 (Erdös-Rényi first moment method; A general lower bound for $ex(n, F)$). For bipartite F, define

$$
c_F = \min_{H \subseteq F} \frac{v(H)}{e(H)}
$$

and

$$
r_F = \min_{H \subseteq F} \frac{v(H) - 2}{e(H) - 1},
$$

where the minimums are taken only for those $H \subseteq F$ with $e(H) \geq 1$ and $v(H) \geq 2$ respectively. Then

$$
ex(n, F) \geq \Omega(n^{2-r_F}) \geq (n^{2-c_F}).
$$

Proof.

We can easily argue that $c_F \geq r_F$.

Let $H \subseteq F$ be the subgraph of F attaining the minimum of r_F . Let $v = v(H)$ and $e = e(H)$. Let α be the number of copies of H in K_v . Consider a random graph $G(n, p)$.

Let β denote the number of copies of H in $G(n, p)$. So

$$
E(\beta) = \sum_{K \in \binom{[n]}{v}} E[\text{number of copies } H \text{ in } K] = \binom{n}{v} \cdot \alpha \cdot p^e,
$$

n

and $E[e(G)] = p\binom{n}{2}$ $\binom{n}{2}$.

Taking $p = c' \cdot n^{-r_F}$ such that

$$
E[e(G)] - E[\beta] = \binom{n}{2} p - \binom{n}{2} \alpha p^e \ge \frac{1}{2} \binom{n}{2} p,
$$

i.e.

$$
\frac{1}{2}\binom{n}{2}p \geqslant \binom{n}{v} \alpha p^e,
$$

which is equivalent to

 $n^{r_F(e-1)} \geqslant n^{v-2}.$

П

 \blacksquare

So there exists a graph G such that

$$
e(G) - \beta \geqslant \frac{1}{2} {n \choose 2} p = \Omega(n^{2-r_F}).
$$

Let G' be the graph obtained from G by deleting an edge from each copy of H . Then G' is H-free and $e(G') \geq e(G) - \beta \geq \Omega(n^{2-r_F}) \geq \Omega(n^{2-c_f}).$ But $H \subseteq F$, so G' is also F-free.

Theorem 20.8. For any bipartite F ,

$$
\Omega(n^{2-c_F}) \leqslant ex(n, F) \leqslant O(n^{2-\frac{c_F}{8}}),
$$

where

$$
c_F = \min_{H \subseteq F} \frac{v(H)}{e(H)}.
$$

Proof. Because $\frac{d_F}{2} = \frac{1}{c_F}$ $\frac{1}{c_F}$, this follows from Corollary [20.6](#page-1-0) and Theorem [20.7.](#page-1-1) Remark. This lower bound is still best for general F.

Theorem 20.9. Let $\mathcal{F} = \{F_1, F_2, \cdots, F_k\}$, where F_j is bipartite. Let

$$
c = \max_{j} c_{F_j} = \max_{j} \min_{H \subseteq F_j} \frac{v(H)}{e(H)},
$$

and

$$
r = \max_{j} r_{F_j} = \max_{j} \min_{H \subseteq F_j} \frac{v(H) - 2}{e(H) - 1}.
$$

Then

$$
ex(n, F) \ge \Omega(n^{2-r}) \ge \Omega(n^{2-c}).
$$

Proof. Left as an exercise.

Remark. Theorem [20.9](#page-2-0) implies that

$$
ex(n, \{C_3, C_4, \cdots, C_m\}) \ge \Omega(n^{1 + \frac{1}{m-1}});
$$

and thus

$$
\Omega(n^{1+\frac{1}{2t-1}}) \leqslant ex(n, \{C_3, C_4, \cdots, C_m\}) \leqslant ex(n, C_{2t}) \leqslant O(n^{1+\frac{1}{t}}).
$$

The best lower bound for C_{2t} is given by the following theorem.

Theorem 20.10 (Lazebnik-Ustimenko-Woldar). For $t \ge 2$,

$$
ex(n, C_{2t}) \geqslant ex(n, \{C_3, C_4, \cdots, C_{2t+1}\}) \geqslant \begin{cases} \Omega(n^{1+\frac{2}{3t-3}}) & \text{if } t \text{ is odd;} \\ \Omega(n^{1+\frac{2}{3t-2}}) & \text{if } t \text{ is even.} \end{cases}
$$

And when $t = 2, 3$ or 5,

$$
ex(n, C_{2t}) = \Theta(n^{1+\frac{1}{t}}).
$$

 \blacksquare

Г

 \blacksquare

Remark. It is one of the main problems in extremal combinatorics to determine $ex(n, C_{2t})$ for $t \notin \{2, 3, 5\}.$

Definition 20.11. For graph F, the Ramsey number $r(F)$ is the minimum n such that any 2-edge-coloring of K_n has a monochromatic copy of F .

Theorem 20.12. Let $F = (A, B)$ ba a bipartite graph such that any $b \in B$ has degree at most r. Then

$$
r(F) \leqslant 4^r(n+r).
$$

Proof.

Consider any 2-edge-coloring of K_N . Let G_i be the graph defined by edges of color $i \in \{1, 2\}$. Since $E(K_N) = E(G_1) \cup E(G_2)$, we can assume $e(G_1) \geq \frac{1}{2}$ $\frac{1}{2} \binom{N}{2}$. If G_1 is F-free, then by Theorem [20.2,](#page-0-1)

$$
e(G_1) \leqslant ex(N, F) \leqslant (n+r)^{\frac{1}{r}} N^{2-\frac{1}{r}}.
$$

It follows that

$$
\frac{1}{2}\binom{N}{2} \leqslant e(G_1) \leqslant (n+r)^{\frac{1}{r}} N^{2-\frac{1}{r}}.
$$

Therefore, $N \leq 4^r(n+r)$.

Theorem 20.13. Let F be an r -degenerate bipartite graph with n vertices. Then

$$
r(F) \leqslant 2^{2\sqrt{r\log n}}n.
$$

Proof. Left as an exercise. Hint: Using Theorem [20.8.](#page-2-1)

Remark. Recently, Lee proved that for such $F, r(F) \leq c(r) \cdot n$, proving a conjecture of Burr-Erdös.

 \blacksquare

 \blacksquare